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ABSTRACT 

The energy estimation for the equation of Rahmatullin is derived using energy 

inequalities. The difference scheme of the equation of Rahmatullin is constructed and 
the stability of the constructed scheme is obtained. 

 

 

INTRODUCTION 

The problems of the fluid and gas motion in porous and granulated 

medium have been studied theoretically and numerically. The filtration in 

porous medium is the basis of many processes in chemical technology such 
as stream in chemical reactors with immovable layer of catalyst, flow of gas 

in blast furnace and shaft furnace, etc. 

 

The classical Darcy equation does not qualitatively describe many 
physical processes [1-5]. For this reason derivation of equations that imply 

the Darcy law as a special case under the appropriate simplifying 

assumptions are very important. In this direction it should be pointed out 
investigations [3, 6, 7-12]. 

 

The equations the present paper deals with to describe the filtrations 
of gas and liquid are close in the ideological plan to papers [3, 8] in which 

multi-fluid model were used.  

 

The aim of the present paper is to derive energy estimation for a 
model problem, and construct the implicit scheme, and show energy 

estimation similarly to the filtration equation.  

 
The filtration equation of Rahmatullin can be obtained from the 

multi-fluid model equations [8, 13, 14] and by assuming the movement of a 

phase is non deformable.  
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The Equation of Rahmatullin is considered in the coordinate form: 
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Here 
j

u  is the j th component of the flow velocity, p  is the 

pressure, f  is the volumetric concentration, 
k

j
δ  is Kronecker delta, µ  is the 

viscosity of the liquid, K is the factor of interaction 

( )2
(1 ) /( )= − 2 2

K f d fαµ , 
j

g is the j th component of the external force. 

 

Note that if 1→f  then equations (1) and (2) are reduced to the 

Navier-Stokes equations for incompressible liquid. Moreover equations (1), 

(2) are extensions of equations describing flow through porous medium. 
After the appropriate simplifications the Darcy equation follows from (1). 

 

We’ll derive energy estimation for the model problem by using 

energy inequalities, and construct difference scheme, and derive difference 
analogue of energy estimation. 

 

THE A PRIORI ESTIMATES FOR CONTINUAL PROBLEM 

Consider the estimations for the solutions of equations (1) and (2)  

 

00, ( )== =
j s j t

u u a x     (3) 

 

Consider also the equations (1), (2) in the area (0, )= Ω×
T

Q T , where 

Ω is the rectangle with boundary (0 )≤ ≤S t T . 

 

To derive an estimation we multiply the equation (1) by scalar 
j

u and 

integrate over Ω . We transform expressions separately, 
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As a next step, transform the convective term. One arrives at: 
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If we apply the integration by parts to other terms of the equation (4), we get  
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Summing up (5) over j we obtain 
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In equation (6) the term containing pressure vanishes by continuity equation.  
We introduce the inner product  
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As 0,µ >  ( ) 0,J v >  0α > , we get from (7) that is 
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If we apply the Cauchy-Schwartz inequality to the right-hand side of the 

inequality (8) we obtain 

d
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and integrating this inequality from 0 to t , we obtain 
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Integrating the equality (6) with respect to t and applying the Cauchy-

Schwartz inequality to the right-hand side of it, and using the inequality (9), 

we obtain 
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Here we used the inequality 2 22ab a b≤ + , which allows us to write. 

Thus,  
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THE IMPLICIT SCHEME 

By following Ladyzhenskaya [15], we construct a difference scheme, 
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Notations in (11) and (12) are the same as [15]. The system (11) 

represents the linear system of equations. 
 

We assume that the equations (11) is satisfied at inner points, and 

(12) is in addition satisfied on the left and bottom of boundary. 
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To obtain estimate we multiply (11), taken in l th time layer, by ( )2
2

l
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To transform the inertial terms we use the relations  
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Taking into account of (12), the second term is also equal to zero. 

Hence, as is shown in continuous case, convective term equals zero. 
 

We extend the domain of 
j

u equating to zero outside of l

h
Ω . 

Applying summation by parts in the terms containing pressure and viscosity, 

we obtain 
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Taking the summation equation (14) can be written as 
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In the equality (15) terms containing pressure vanish due to the 

continuity equation. 

 
We define net analogue of inner product and norm for net vector 
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The expression for ( )
h

L v  can be transformed as follows 
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As ( ) 0,
h

L v >  then according to the Cauchy-Schwartz inequality we obtain 

from (16) more rough inequality 
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Summing up (16) over l from = 1l  to =l m  we have 
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Let's estimate the right-hand side of the equality (19) by using the inequality 

(20) 
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Using this inequality, we obtain the difference analogue of the inequality 
(10) 
 

( )
2 2 22

1 1 1

( ) 2
m m m

m l l

h t h h f
l l l

v t v t L v t v
ρ ρ

µ α
= = =

+ ∆ + ∆ + ∆∑ ∑ ∑
2

2
0

1

2 5
m

l

h h

l

v t G
ρ ρ

=

 
≤ + ∆ 

 
∑                                                                (21) 

 

The inequality (21) shows the stability of the constructed scheme. 

 

 

CONCLUSION 

On the basis of multi-fluid model under the assumption that the 
motion of discontinuous phase is absent the Rahmatullin equation is 

obtained which generalizes Navier-Stokes equations. Energy estimation for 

continuous problem is derived. Implicit finite-difference analogue of the 

Rahmatullin equation is derived and its stability is proved. The constructed 
scheme enables to explore complex flows containing porous rigid solid in it. 
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